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SUMMARY

PorAS, a new approximate-state Riemann solver, is proposed for hyperbolic systems of conservation laws
with source terms and porosity. The use of porosity enables a simple representation of urban floodplains
by taking into account the global reduction in the exchange sections and storage. The introduction of
the porosity coefficient induces modified expressions for the fluxes and source terms in the continuity
and momentum equations. The solution is considered to be made of rarefaction waves and is determined
using the Riemann invariants. To allow a direct computation of the flux through the computational cells
interfaces, the Riemann invariants are expressed as functions of the flux vector. The application of the
PorAS solver to the shallow water equations is presented and several computational examples are given
for a comparison with the HLLC solver. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The complexity of a two-dimensional flood simulation in urban area has recently led to research
on the insertion of porosity in the shallow water models. In that sense, porosity can be used to
‘represent the effect that the area subject to flooding is only a fraction of the total surface area’ [1].
This approach has also been used to model gas flow across grids [2]. The first known derivation
of shallow water flow [3] was very simple in that porosity was not fully taken into account in
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the equations. Thus, Hervouet et al. [4] have proposed a more detailed set of equations that were
neither written nor solved in conservative form. Some solvers have already been proposed for
hyperbolic systems of conservation laws (HSCLs) with porosity, such as a Finite Volume Roe solver
for two-dimensional Euler equations with porosity [2] and an HLLC-modified Riemann solver for
the two-dimensional shallow water equations with porosity [5]. An approximate-state (AS) solver
was then proposed [6] for HSCLs with source terms. The present paper aims to propose a new AS
solver, named PorAS, to solve HSCLs involving topography- and porosity-driven source terms.

In 1959, Godunov [7] proposed to solve HSCLs by considering finite volumes where the calcu-
lated value of each variable is assumed to be the average of the variable over the volume. The
fluxes between the volumes can be calculated by solving a Riemann problem at the interface. Theo-
retically, an exact solution of the Riemann problem can be computed but this is a time-consuming
procedure, which is not used effectively even with the development of powerful computers. There-
fore, many different approaches have been proposed in the last 50 years to solve the Riemann
problem. The different developed solvers can be classified into two categories: those solving a
simplified Riemann problem in an exact way and those solving the exact Riemann problem with
simplified equations.

Considering simplified Riemann problem solved in an exact way, Roe’s solver is based on the
assumption that the Jacobian matrix is constant [8]. The matrix is calculated using the consistency
and conservation conditions. Since the calculation of the the matrix terms can be difficult, a new
algorithm was proposed [9] to solve the Riemann problem without computing the whole Jacobian
matrix. A second improvement has been provided to the initial Roe’s solver in order to enforce
the entropy condition [9–12].

The primitive variable Riemann solver (PVRS) [12] uses the so-called primitive variables (which
are most of the time not the conserved variables) to express the Riemann problem to solve. This
method is based on the Rankine–Hugoniot relation to compute the flow through the discontinuities
and the generalized Riemann invariants for rarefaction waves.

For approximate Riemann solvers—as for many others—being quite inefficient close to strong
gradients of the variables, the logical rationale is to combine simple Riemann solvers in regions
of smooth flow and more sophisticated ones elsewhere in an ‘Adaptive Riemann solver’. One of
the first proposed [13] involves the PVRS and the exact Riemann solver. It was first implemented
for steady supersonic solutions of the Euler equations [14] and later adapted to an MUSCL
scheme [15].

Introduced by Harten et al. [16], the HLL solver solves an exact Riemann problem with simplified
equations. It is based on the assumption of two waves separating three regions of constant state with
an a priori determination of the waves’ speed. Direct estimation of the flux through the interface
can be established by the Rankine–Hugoniot relations through each discontinuity. As noticed by
Guinot [17], the HLL solver can be applied to any HSCL, whatever its size. However, contact
discontinuities are smoothed for the 3×3 HSCLs. An efficient adaptation of the HLL solver is
the HLLC solver [18] that uses three waves separating two intermediate regions of constant state
from the left and right states of the Riemann problem. The treatment of the discontinuities has
also been improved to reduce the numerical diffusion as much as possible.

Osher [19] splits the Jacobian matrix into two matrices containing, respectively, the positive and
the negative eigenvalues, and computes the flux vector as the sum of two vector-valued functions.

Another solver, independent of any physical relation [20], uses the Rankine–Hugoniot relation
to establish the flux through the left and the right discontinuities; a heuristic relation being used
to establish the missing equation in the system to solve.
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Unlike the previously quoted solvers, AS solvers do not determine the wave configuration to
use the appropriate relation through each discontinuity. In [21] is shown that the relations used
for the shock waves differ from the ones used for the rarefaction waves only by a third-order
term with respect to the conservative variable. The same relations are thus used regardless of
the nature of the waves: the Rankine–Hugoniot relation is used when all the waves are assumed
to be shocks, whereas the generalized Riemann invariants are used when rarefaction waves are
considered. Riemann solvers based on a two-shock assumption have been proposed in [22, 23]
for the Euler equations of gas dynamics. The assumption of two rarefaction waves has been used
for example to solve the water hammer equations [24], a system of equations describing two-
phase flows in pipes [25], shock wave propagation in liquids [26] or the Euler equations of gas
dynamics [27].

All the above-mentioned solvers are designed for HSCLs without source terms. Consequently,
instability may arise in the presence of source terms induced by the porosity or the bottom
slope for the shallow water equation. Different methods have been developed to deal with such
issues. The time-splitting method is a multi-step algorithm that first solves the hyperbolic system
without source terms (i.e. the conservation part of the equation) and then corrects the computed
value by taking into account the source terms. Since the time-splitting method is quite efficient
except when the solution is close to a steady state, LeVeque [28] proposes the Quasi-Steady
Wave-Propagation Algorithm. This algorithm modifies the Riemann problems at the cell edges by
introducing an extra Riemann problem at the centre of the cell. Another splitting method (Source
term upwinding) consists of assigning the source terms to both cells across the interface according
to the wave celerity in the cells [29]. The topography can also be incorporated as part of the
conserved variables vector via a partial differential equation with respect to time [30]. This leads
to new Riemann problems that are solved in an exact way [1, 30] or with approximate Riemann
solvers [31]. The Quasi-Steady algorithm and the Source term upwinding technique are examples
of well-balanced schemes.

The PorAS solver presented in this paper is based on the Riemann invariants through a two
rarefaction wave assumption, as proposed by Lhomme and Guinot [6] for shallow water equations
without porosity. The developments with porosity were initiated in [32] but did not succeed. To
allow a direct computation of the flux through the interface, the Riemann invariants are expressed
as functions of the flux vector. The following section describes the governing equations and the
solution principle applied to the shallow water equations. Computational examples are given in
Section 3 to compare the results obtained using the PorAS and HLLC solvers. Conclusion and
discussion are given in Section 4.

2. GOVERNING EQUATIONS

2.1. General framework

The overall goal of the proposed solver is to solve the hyperbolic system of conservation laws for
the one-dimensional projection of the two-dimensional shallow water equations with source terms
arising from non-uniform porosity and bottom elevation. This system can be written in vector
form as

�U
�t

+ �F
�x

=S (1)
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where U is the conserved variable, F is the flux, S the source term and t and x are, respectively, the
time and the space coordinates. The shallow water equations with porosity (i.e. the continuity and
the momentum equation in each direction) written in the form of (1) leads to define U, F and S as

U=
⎡
⎢⎣

�h

�hu

�hv

⎤
⎥⎦ , F=

⎡
⎢⎢⎢⎣

�hu

�hu2+ 1

2
g�h2

�huv

⎤
⎥⎥⎥⎦ , S=

⎡
⎢⎢⎢⎣

0

S0−Sf+ 1

2
gh2

��

�x
0

⎤
⎥⎥⎥⎦ (2)

where � is the porosity, g the gravitational acceleration, h the water depth, u and v the velocities in
the x and y directions, respectively, S0 and Sf the source terms corresponding to the bottom slope
and to the friction in the x direction, respectively. The detailed calculation has been explained in
[5, 32]. The source terms S0 and Sf are defined as

S0=−gh�
�zb
�x

, Sf=gh�
(u2+v2)1/2

K 2h4/3
u (3)

where zb is the bottom elevation and K is the Strickler coefficient. The definition of the friction
term Sf accounts only for friction on the river bed. In previous works on the subject [5, 33, 34],
the friction term Sf was modified to account also for energy losses due to flow regime variations,
multiple reflections waves, etc. As shown in Section 2.2, the PorAS solver do not take the friction
term into account because its computation is made in a different step, using the time-splitting
algorithm. Therefore, the friction term definition does not matter for the purpose of the present
work. It can be proved that the system of conservation laws (1) is hyperbolic, i.e. the Jacobian
matrix of the flux F with respect to U exists and has three real and distinct eigenvalues.

Equation (1) is discretized as follows:

Un+1
i =Un

i − �t

Ai

∑
j∈N (i)

[Pi, jF
n+1/2
i, j wi, j +(Sn+1/2

i, j )i ] (4)

where

Pi, j =
⎛
⎜⎝
1 0 0

0 n(x) n(y)

0 −n(y) n(x)

⎞
⎟⎠

is the matrix that accounts for the coordinate change from the global (x, y) coordinate system to
the local one (�,�), attached to the interface (see Figure 1), Un

i is the average of U over the cell i
at the time step n, �t is the computational time step, Ai is the area of the cell i, N (i) is the set
of neighbouring cells of i, Fn+1/2

i, j is the average of F between the time step n and n+1 in the

normal direction, wi, j is the width of the interface between i and j, Sn+1/2
i, j is the contribution of

the source terms to the cell i computed from U between the cells i and j .
In one dimension, this discretization can be simplified as:

Un+1
i =Un

i + �t

�xi
(Fn+1/2

i−1/2 −Fn+1/2
i+1/2 )+�t (Sn+1/2

i−1/2,i +Sn+1/2
i+1/2,i ) (5)
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(a) (b)

Figure 1. Definition sketch for the finite volume formalism in one dimension (a) and two dimensions (b).

If an explicit method is used to estimate the fluxes (i.e. the fluxes F are computed using the
values of U at the time step n), the Courant–Friedrichs–Lewy condition must be used to ensure
the stability of the numerical solution

maxp(|�p|�t)
�xi

�1 ∀i (6)

where �p is the pth eigenvalue of the Jacobian matrix �F/�U.
It is also possible to generalize (1) to multi-dimensional space problem, but in all cases, the

flow variable in a given cell is computed from the balance between the fluxes at the interfaces of
the cell and from the contributions of the source terms. As the flux and source terms are frequently
computed by solving the one-dimensional equations in the local coordinate system (�,�), the
computation of the one-dimensional equations is a key issue. In [7] is proposed the computation
of the flux Fn+1/2

i+1/2 by solving a Riemann problem at the interface i+ 1
2 between the time step n

and n+1. The Riemann problem is defined as follows:

�U
�t

+ �F
�x

= S

U(x, tn) =
{
UL for x<xi+1/2

UR for x>xi+1/2

(7)

UL and UR are, respectively, called the left and right state of the Riemann problem.
In most cases, the Riemann solvers do not take the source terms into account in the conservation

part of the equation. In such solvers, equilibrium conditions may not be verified. This is the case
for instance for water at rest over a non-horizontal bottom. The water depth is not the same on
each side of the interface. In the Riemann problem for the shallow water equations, the flux vector
computation leads to non-zero discharge and impulse (i.e. the two first components of the flux
vector are not nil) [6]. The first component of the source term vector being nil by definition, the non-
zero discharge cannot be compensated by the source term discretization. In the second equation,
the non-zero impulse can be compensated by a correct discretization of the second component of
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the source term vector (for instance, by using source term upwinding [29, 35]), but this is not the
case in the continuity equation. Since equilibrium conditions are not verified, spurious oscillation
may arise. In [36] it is proposed to avoid this problem by considering water surface elevation
instead of water depth in the shallow water equations. Problems still remain if the variation of
the channel width is taken into account in the source terms. For the PorAS solver, equilibrium
conditions are satisfied by taking the source terms into account in the Riemann solver. The nature
of the waves in the Riemann problem is determined a priori. Since characteristic relationships
across the rarefaction waves can be approximated by the jump relationships [21, 23], the jump
relationships or the Riemann invariants may be used indifferently to provide an approximation of
the intermediate states in the solution. The PorAS solver assumes that all waves are rarefaction
waves, which simplifies the source terms treatment. This assumption is used to write the Riemann
invariant relationships across the waves. Such relationships are generally used to compute the value
of U and then to estimate F. Problems may arise since such a rationale requires the estimation of
S at the interface; S being not necessarily constant on both sides of the interface. Examples with
the shallow water equations show that S depends on the value of U on both sides of the interface.
This burden is eliminated in the proposed approach by computing F directly at the interface.

2.2. Flux and source term computation

This subsection presents the developments for the proposed solver. The solution U and the flux F
are supposed to be differentiable. Equation (1) is multiplied on the left-hand side by the Jacobian
matrix A. This leads to

A
�U
�t

+A
�F
�x

=AS (8)

where A is given by

A=

⎛
⎜⎜⎝

0 1 0

c2−u2 2u 0

−uv v u

⎞
⎟⎟⎠ (9)

which can also be written as

�F
�t

+A
�F
�x

=AS (10)

where c is the propagation speed of the pressure waves defined as:

c=
[
d

dh

(
gh2

2

)]1/2
=(gh)1/2 (11)

The matrix K of the eigenvalues of A, the matrix K of the eigenvectors of A and the inverse matrix
of K are given by:

K=
⎛
⎜⎝
u−c 0 0

0 u 0

0 0 u+c

⎞
⎟⎠ , K=

⎛
⎜⎝

1 0 1

u−c 0 u+c

v 1 v

⎞
⎟⎠ , K−1= 1

2c

⎛
⎜⎝

u+c −1 0

−2cv 0 2c

−(u−c) 1 0

⎞
⎟⎠ (12)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:1299–1331
DOI: 10.1002/fld



PORAS: SHALLOW WATER SOLVER WITH POROSITY 1305

The wave celerities are therefore given by:

�1 = u−c

�2 = u

�3 = u+c

(13)

Equation (10) is left multiplied by K−1

K−1 �F
�t

+K−1A
�F
�x

=K−1AS (14)

Introducing the term K=K−1AK leads to:

K−1 �F
�t

+KK−1 �F
�x

=KK−1S (15)

Introducing the definition dW=K−1dF, Equation (15) can be rewritten as

�W
�t

+K�W
�x

=KS′ (16)

where the source term S′ is defined by:

S′ =K−1S (17)

From (2) and (12), vectors dW and S′ are therefore given by:

dW= 1

2c

⎡
⎢⎣

�3 dF1−dF2

−2cv dF1+2cdF3

−�1 dF1+dF2

⎤
⎥⎦ , S′ = 1

2c

⎡
⎢⎢⎢⎢⎢⎣
Sf−S0− 1

2
gh2

��

�x
0

S0−Sf+ 1

2
gh2

��

�x

⎤
⎥⎥⎥⎥⎥⎦ (18)

The overall algorithm used to solve the shallow water equations with porosity (1) and (2) is the
same as in [5]. Therefore, the present Riemann solver computes only the flux and the part of the
source term that arises from the bottom slope and the porosity gradient. The above-mentioned
friction term is computed separately in a different step of the overall algorithm. Therefore, the
friction terms are not taken into account in the formulation of the Riemann solver; i.e. Sf is zero
in (18). Equation (16) is equivalent to the following set of differential relationships:

dWk

dt
=�k S

′
k along

dx

dt
=�k, k=1, . . . ,m (19)

where the subscript k corresponds to the kth component of the vector in (16) and where

dWk =
3∑

l=1
K−1
l,k dFl (20)

where K−1
l,k is the value on the lth column and the kth row of the matrix K−1 and Fl is the lth

component of the flux vector F. The Riemann invariants of the system are the Wk if the vector
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Figure 2. Definition sketch for the integration path along the characteristic.

dW can be integrated. It was shown in [37] that it is not possible to integrate dW to provide
independent Riemann invariants except in particular cases (e.g. for the 2×2 system of conservation
laws). The method presented hereafter is thus based on the general formulation (19).

To estimate the flux Fn+1/2
i+1/2 , (19) must be integrated between the points M(xi+1/2, tn+1/2) and

the foot Ak of the kth characteristic leading to M: dx/dt=�k (see Figure 2). Assuming that �k is
constant along the characteristic, the integration of (19) leads to

∫ M

Ak

dWk =
∫ tn+1/2

tn
�k S

′
k dt≈

�t

2
�k S′

k, k=1,2,3 (21)

where S′
k is the average of S′

k along the integration path. Substituting (20) into (21) leads to:

∫ M

Ak

3∑
l=1

K−1
l,k dFl =

�t

2
�k S′

k, k=1,2,3 (22)

The coefficients of the matrix K−1 are assumed to be constant along the characteristics [6]. The
coefficients in the kth row of the matrix are thus taken equal to the coefficients on the side of the
interface to which the foot Ak of the kth characteristic belongs:

K−1
l,k =

⎧⎨
⎩
K−1
l,k (UL) if �k>0

K−1
l,k (UR) if �k<0

(23)

Since the coefficients of the matrix K−1 and �k are assumed to be constant along the integration
path, (22) can be written as∫ M

Ak

3∑
l=1

K−1
l,k dFl ≈

3∑
l=1

K−1
l,k

∫ M

Ak

dFl = �t

2
�k S′

k, k=1,2,3 (24)

and therefore

3∑
l=1

K−1
l,k (Fl,M−Fl,Ak )=

�t

2
�k S′

k, k=1,2,3 (25)
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where Fl,M and Fl,Ak represent the lth component of the vector F, respectively, in M and Ak . Ak is
located on the left-hand side of the interface when �k is positive and on the right-hand side when
�k is negative. Therefore,

Fl,Ak =
{
Fl,L if �k>0

Fl,R if �k<0
(26)

The value of F at M(xi+1/2, tn+1/2) is computed by solving the 3×3 system of equations (25).

This value is assumed to be equal to the average value Fn+1/2
i+1/2 over the time step n, n+1. Prior

to resolution, the average source term S′
k is estimated by

S′
k = S′

k

(
ULR,

(
�zb
�x

)
LR

,

(
��

�x

)
LR

)
(27)

where (
�zb
�x

)
LR

≈ zbR −zbL

(�3−�1)
�t

2

(28a)

(
��

�x

)
LR

≈ �R−�L

(�3−�1)
�t

2

(28b)

correspond to the average slope over the domain of dependence of the solution. Combining (28)
with (2) and (3) leads to

S=−g(�h)LR
zbR −zbL

(�3−�1)
�t

2

+ 1

2
g(hLR)2

�R−�L

(�3−�1)
�t

2

(29)

where (�h)LR is estimated at the interface between the left and right cells and hLR is the depth at
the interface. These variables may depend on the considered characteristic.

The eigenvalues of A are assumed to be constant. Substituting (12) and (18) in (25) leads to:

�3(F1−F1,R)−(F2−F2,R)=−�t

2
�1S for

dx

dt
=�1 (30a)

−v(F1−F1,A)+(F3−F3,A)=0 for
dx

dt
=�2 (30b)

−�1(F1−F1,L)+(F2−F2,L)= �t

2
�3S for

dx

dt
=�3 (30c)

with

Fl,A=
{
Fl,L if �2>0

Fl,R if �2<0
(31)

Since (30a) and (30c) are written for two different waves, the expressions (�h)LR and (hLR) used
in (29) for the definition of S may be different. In the following, the variables at the interface are
so written with the superscripts (1), (2) and (S); corresponding, respectively, to the variables at the
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interface for the first and second component of the flux vector and for the source term. The next
subsection is devoted to their evaluation. Combining (29) with (30) leads to the following system
of equations that is valid for the flux vector in the intermediate region of constant state (marked
by the star superscript):

F∗
1 = 1

�3−�1
(F2,L−F2,R−�1F1,L+�3F1,R)

+ 1

�3−�1

[
1

2
g(h(1)

LR)2(�R−�L)−g(�h)
(1)
LR(zbR −zbL)

]
(32a)

F∗
2 = 1

�3−�1
(�3F2,L−�1F2,R−�1�3(F1,L−F1,R))

+�3+�1
�3−�1

[
1

2
g(h(2)

LR)2(�R−�L)−g(�h)
(2)
LR(zbR −zbL)

]
(32b)

F∗
3 =v(F∗

1 −F1,A)+F3,A (32c)

2.3. Estimation of the variables at the interface

The estimation of the different variables at the interface is made by using physical cases. One
should notice that porosity can be considered as the effective width of the computing cell available
for the flow. In a one-dimensional problem, involving a spatial variation of the porosity or the
width leads to the same set of equations.

2.3.1. Estimation of (�h)
(1)
LR and h(1)

LR. These values are determined using the continuity and
momentum equations. The continuity equation can be written as:

(�hu)L=(�hu)R=(�hu)∗ =q (33)

Combining (33) with the expression of the flux F∗
1 in (32a) leads to:

F∗
1 = 1

�3−�1

[
q(uL−uR)+ 1

2
g((�h2)L−(�h2)R)

]

+ 1

�3−�1

[
1

2
g(h(1)

LR)2(�R−�L)−g(�h)
(1)
LR(zbR −zbL)

]
+q (34)

In a steady-state case, F∗
1 is equal to the flow q across the interface and hence:

q(uL−uR)+ 1
2g[(�h2)L−(�h2)R]+ 1

2g(h
(1)
LR)2(�R−�L)−g(�h)

(1)
LR(zbR −zbL)=0 (35)

The first relation linking the three variables has been established; the momentum equation is used
to estimate q . The balance is carried out on two cells on both sides of a porosity and bottom
elevation discontinuity. To establish the balance, the forces applied to the fluid have to be estimated
along the horizontal axis. Hereafter, the flow is assumed to be directed from left to right. The
different sketches used to derive the momentum balance are illustrated in Figure 3.
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Figure 3. Considered sketches to establish the momentum equation.

The force calculation is detailed for case 1 corresponding to zbL<zbR and �L>�R.
Force exerted by areas ABFE and CDHG:

Fa =−g
∫ �L

�R

[∫ zL

zbR

(zL−z)dz

]
d�=−1

2
g(�L−�R)(zL−zbR)2 (36)

Force exerted by area FGKJ:

Fb=−g�R

∫ zbR

zbL

(zL−z)dz=−g�R(zbR −zbL)

(
zL− zbR +zbL

2

)
(37)

Force exerted by areas EFJI and GHLK:

Fc=−g
∫ �L

�R

[∫ zbR

zbL

(zL−z)dz

]
d�=−g(�L−�R)(zbR −zbL)

(
zL− zbR +zbL

2

)
(38)

Total force exerted onto the fluid:

Fa+Fb+Fc=−1

2
g(�L−�R)h2L−g�R(zbR −zbL)

(
zL− zbR +zbL

2

)
(39)

The momentum balance should be written for a steady-state regime to ensure static balance:

(�hu2+ 1
2g�h

2)R−(�hu2+ 1
2g�h

2)L=Fa+Fb+Fc (40)

Combining Equations (39) and (40) leads to:

q(uR−uL)= 1

2
g[(�h2)L−(�h2)R]− 1

2
g(�L−�R)h2L−g�R(zbR −zbL)

(
zL− zbR +zbL

2

)
(41)
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Using the same reasoning for cases 2 to 4 leads to the following general expression:

q(uL−uR) = −1

2
g[(�h2)L−(�h2)R]+ 1

2
g(�L−�R)(h(0)

LR)2

+g�(0)
LR(zbR −zbL)

(
z(0)LR− zbR +zbL

2

)
(42)

where

�(0)
LR=min(�L;�R) (43a)

z(0)LR=
{
zL if zbL<zbR

zR if zbL>zbR
(43b)

h(0)
LR=

{
hL if �L>�R

hR if �L<�R

(43c)

Combining (35) and (42) yields the following equation:

1

2
g(�L−�R)[(h(0)

LR)2−(h(1)
LR)2]+g(zbL −zbR)

[
(�h)

(1)
LR−�(0)

LR

(
z(0)LR− zbR +zbL

2

)]
=0 (44)

Equation (44) involves the unknown variables (�h)
(1)
LR and h(1)

LR. However, the equation is valid
whatever the values of �R,�L, zbL and zbR may be. Considering the particular case �L=�R in (44)
leads to

(�h)
(1)
LR=�(0)

LR

(
z(0)LR− zbR +zbL

2

)
(45)

whereas the case zbR = zbL implies (h(1)
LR)2=(h(0)

LR)2. Since h(1)
LR corresponds to the water depth at

the interface, this value should be positive and thus:

h(1)
LR=h(0)

LR (46)

2.3.2. Estimation of (�h)
(S)
LR and h(S)

LR . A momentum balance on two cells on both sides of a
porosity and bottom elevation discontinuity is used. The integral form of the source term can be
written as

(�S0)
n+1/2
LR =−g(�h)

(S)
LR(zbR −zbL)+ 1

2g(h
(S)
LR)2(�R−�L) (47)

and the momentum balance can be written as:

(�hu2+ 1
2g�h

2)
n+1/2
L −(�hu2+ 1

2g�h
2)

n+1/2
R +(�S0)

n+1/2
LR =0 (48)

Combining (47) with (48) leads to:

q(uL−uR)+ 1
2g[(�h2)L−(�h2)R]+g(�h)

(S)
LR(zbL −zbR)− 1

2g(h
(S)
LR)2(�L−�R)=0 (49)
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Figure 4. Considered sketch to establish the momentum equation for the estimation of (�h)
(2)
LR and h(2)

LR.

Substituting q(uL−uR) in (49) by the expression (42) yields:

g(zbL −zbR)

[
(�h)

(S)
LR −�(0)

LR

(
z(0)LR− zbR +zbL

2

)]
+ 1

2
g(�L−�R)[(h(0)

LR)2−(h(S)
LR)2]=0 (50)

As (50) is equivalent to (44), it is possible to conclude that:

(�h)
(S)
LR =(�h)

(1)
LR (51)

(h(S)
LR)2=(h(1)

LR)2⇒h(S)
LR =h(1)

LR (52)

2.3.3. Estimation of (�h)
(2)
LR and h(2)

LR. A steady-state momentum balance is carried out on three
cells (i−1, i and i+1) with a porosity and bottom elevation discontinuity between the cells i and
i+1 (see the sketch on Figure 4).

The momentum balance over the cell i can be written as:

(�hu)n+1
i −(�hu)ni+1= �t

�xi

(
F∗
2 + �3

�3−�1
�S0

)n+1/2

i−1/2
− �t

�xi

(
F∗
2 + �1

�3−�1
�S0

)n+1/2

i+1/2
=0 (53)

Combining (32b) with (53) leads, for the interface between the cells i−1 and i , to:(
F∗
2 + �3

�3−�1
�S0

)n+1/2

i−1/2

= 1

�3−�1

[
�3

(
�hu2+ 1

2
g�h2

)
i−1

−�1

(
�hu2+ 1

2
g�h2

)
i
−�3�1((�hu)i−1−(�hu)i )

]

+�3+�1
�3−�1

[
1

2
g(h(2)

i−1/2)
2(�i−1−�i )+g(zbi−1 −zbi )(�h)

(2)
i−1/2

]

+ �3
�3−�1

[
g�(0)

LR(zbi−1 −zbi )

(
z(0)LR− zbi−1 +zbi

2

)
− 1

2
g(�i−1−�i )(h

(0)
LR)2

]
(54)
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Since there is no discontinuity between cells i−1 and i :

(�hu2+ 1
2g�h

2)i−1 = (�hu2+ 1
2g�h

2)i �=(�hu2+ 1
2g�h

2)i+1

(�hu)i−1 = (�hu)i =(�hu)i+1=q

�i−1 = �i �=�i+1

zbi−1 = zbi �= zbi+1

(55)

Introducing (55) into (54) leads to:

(
F∗
2 + �1

�3−�1
�S0

)n+1/2

i−1/2
= 1

�3−�1

[
�3

(
�hu2+ 1

2
g�h2

)
i
−�1

(
�hu2+ 1

2
g�h2

)
i

]

=
(

�hu2+ 1

2
g�h2

)
i

(56)

At the interface between the cells i and i+1, the momentum flux can therefore be written as:

(
F∗
2 + �1

�3−�1
�S0

)n+1/2

i+1/2

= 1

�3−�1

[
�3

(
�hu2+ 1

2
g�h2

)
i
−�1

(
�hu2+ 1

2
g�h2

)
i+1

−�3�1[(�hu)i −(�hu)i+1]
]

+�3+�1
�3−�1

[
1

2
g(h(2)

i+1/2)
2(�i −�i+1)+g(zbi −zbi+1)(�h)

(2)
i+1/2

]

+ �1
�3−�1

[
g�(0)

LR(zbi −zbi+1)

(
z(0)LR− zbi +zbi+1

2

)
− 1

2
g(�i −�i+1)(h

(0)
LR)2

]
(57)

Applying the continuity equation in (57) leads to:

(
F∗
2 + �1

�3−�1
�S0

)n+1/2

i+1/2

= 1

�3−�1

[
�3

(
�hu2+ 1

2
g�h2

)
i
−�1

(
�hu2+ 1

2
g�h2

)
i+1

]

+�3+�1
�3−�1

[
1

2
g(h(2)

i+1/2)
2(�i −�i+1)+g(zbi −zbi+1)(�h)

(2)
i+1/2

]

+ �1
�3−�1

[
g�(0)

LR(zbi −zbi+1)

(
z(0)LR− zbi +zbi+1

2

)
− 1

2
g(�i −�i+1)(h

(0)
LR)2

]
(58)

The steady-state assumption implies that

(�hu)n+1
i −(�hu)ni =0 (59)
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and hence (
F∗
2 + �3

�3−�1
�S0

)n+1/2

i−1/2
=

(
F∗
2 + �1

�3−�1
�S0

)n+1/2

i+1/2
(60)

Combining (60), (58) and (56) yields:

�1

{
q(ui −ui+1)+ 1

2
g[(�h2)i −(�h2)i+1]

}

+(�3−�1)

[
1

2
g(h(2)

i+1/2)
2(�i −�i+1)+g(zbi −zbi+1)(�h)

(2)
i+1/2

]

+�1

[
g�(0)

LR(zbi −zbi+1)

(
z(0)LR− zbi −zbi+1

2

)
− 1

2
g(�i −�i+1)(h

(0)
LR)2

]
=0 (61)

Substituting q(ui −ui+1) in (61) by the expression (42) leads to:

1
2g(h

(2)
i+1/2)

2(�i −�i+1)+g(zbi −zbi+1)(�h)
(2)
i+1/2=0 (62)

As (62) is valid for all existing cases depending on the respective values of �i+1,�i , zbi and zbi+1 ,

it is possible to conclude that h(2)
i+1/2=0 and (�h)

(2)
i+1/2=0.

Substituting (�h)
(1)
LR, (�h)

(2)
LR, (�h)

(S)
LR, h(1)

LR, h(2)
LR and h(S)

LR in the system of equations (32)
yields the following expression for the flux through the interface:

F∗
1 = 1

�3−�1
[F2,L−F2,R−�1F1,L+�3F1,R]

+ 1

�3−�1

[
1

2
g(�R−�L)(h(0)

LR)2−g�(0)
LR(zbR −zbL)

(
z(0)LR− zbR +zbL

2

)]
(63a)

F∗
2 = 1

�3−�1
[�3F2,L−�1F2,R−�1�3(F1,L−F1,R)] (63b)

F∗
3 =v(F∗

1 −F1,A)+F3,A (63c)

where �(0)
LR, z(0)LR and h(0)

LR are defined by (43).

2.4. Practical implementation

The values computed for the flux using the system of equations (63) are only valid for the flux
in the intermediate constant zone. For the purpose of the solver, it is necessary to determine the
flux at the interface between the cells, i.e. the initial discontinuity of the Riemann problem. Five
different cases can be defined depending on the wave configuration and the respective location of
the intermediate zone and the interface (see Figure 5 for more detail).

It is recalled that configurations C1 and C5 correspond to a supercritical regime, configurations
C2 and C4 correspond to a critical regime and configuration C3 corresponds to the subcritical
regime. It is necessary to estimate the celerities �∗

1 and �∗
3 in the constant intermediate zone. Along
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Figure 5. Relative position of the intermediate region to the interface.

each characteristic, the Riemann invariants are used to compute u∗ and c∗:

u∗+2c∗ = uL+2cL

u∗−2c∗ = uR−2cR
(64)

The source terms have to be taken into account in (64) but the experiment shows that they can be
neglected at this stage. Solving the system of equations (64) leads to:

u∗ = uL+uR
2

+cL−cR

c∗ = uL−uR
4

+ cL+cR
2

(65)

The celerities �∗
1 and �∗

3 are computed as follows:

�∗
1=u∗−c∗

�∗
3=u∗+c∗ (66)
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The comparison of �∗
1,�

∗
3, �1,L and �3,R enables to determine the wave configuration and thus the

value of the flux vector component at the initial discontinuity. For the critical regime, the fluxes
are computed using the classical HLLC formulae:

�1,L>0

{
F1=F1,L

F2=F2,L
C1

�1,L<0 & �∗
1>0

⎧⎪⎪⎨
⎪⎪⎩
F1= 1

�3−�1
[�3F1,L−�1F1,R−�1�3(zL−zR)]

F2= 1

�3−�1
[�3F2,L−�1F2,R−�1�3(F1,L−F1,R)]

C2

�∗
1<0 & �∗

3>0

{
F1=F∗

1

F2=F∗
2

C3

�∗
3<0 & �3,R>0

⎧⎪⎪⎨
⎪⎪⎩
F1= 1

�3−�1
[�3F1,L−�1F1,R−�1�3(zL−zR)]

F2= 1

�3−�1
[�3F2,L−�1F2,R−�1�3(F1,L−F1,R)]

C4

�3,R<0

{
F1=F1,R

F2=F2,R
C5

(67)

For any waves configuration, the fluxes at the interface can be computed and the values of the
conserved variables can therefore be calculated at each time.

3. COMPUTATIONAL EXAMPLES

Eight different geometries have been used to determine the efficiency of the PorAS solver under
different flow conditions (subcritical, supercritical, transcritical and hydraulic jump) leading to 13
tests cases (named Ti,(sub,sup, trans, jump)). The results are compared with the analytical (or semi-
analytical) solution and with results calculated using the classical HLLC solver presented in [5].
Each geometry is described in the corresponding sub part. Geometry 1 has been developed to
evaluate the PorAS solver performance under steady flow condition (T1,(sub,sup, trans, jump)). Further
comparisons have also been conducted on the test cases proposed in [6]: T2,(sub, trans) and in [5]:
T3, T4 and T5. A convergence study is performed both for the PorAS and the HLLC solver:
T6,(1,2,3). The efficiency of the PorAS solver is also assessed by comparing the model results
with experimental data: T7. For all the following figures, the reader may have some difficulties to
identify the different curves that are merged most of the time.

3.1. One-dimensional flow in case of variable porosity (T1,(sub,sup, trans, jump))

The first geometry consists of permanent flow in a channel with nil bottom slope and variable
porosity. The four-associated test cases highlight theperformance of the proposed solver in the
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presence of a spatially varying porosity. A parabolic profile has been chosen for the porosity

�(x) =
{
ax2+bx+c for x ∈[Xm−L0; Xm+L0]
�0 elsewhere

a = �0−�m

L2
0

, b=−2aXm, c=�0+a(X2
m−L2

0)

(68)

where 2L0 is the length of the porosity variation, Xm is the position of the middle of the porosity
variation, �0 is the porosity outside of the porosity variation area and �m is the porosity in the
middle of the porosity variation. The computational parameters are given in Table I. In steady
flow, the momentum equation can be written as:

d

dx

(
q2

�h
+ 1

2
g�h2

)
= 1

2
gh2

d�

dx
(69)

Combining the continuity equation in steady flow with the momentum Equation (69) leads to

�
dh

dx
(1−Fr2)=hFr2

d�

dx
(70)

where Fr represents the Froude number. Depending on the flow regime, the discretization has to
be done from upstream to downstream (supercritical flow):

hd=hu−hu
u2u

�(ghu−u2u)
(�u−�d) (71)

The reference for the test case T1,sup is established by prescribing the upstream boundary condition
h=0.2m with a unit discharge q=1m2 s−1. For the test case T1,sub, the unit discharge is also
q=1m2 s−1 and the downstream boundary condition is h=1.1m. For the transcritical test case
T1,trans, it is easy to show that the critical point where Fr=1 is necessarily obtained for a nil

Table I. Parameters for the first geometry: steady flow test cases (one-dimensional flow in
narrowing channel—T1,(sub,sup, trans, jump)).

Symbol Meaning Value

g Gravitational acceleration 9.81ms−2

�0 Porosity outside of the porosity variation 1
Minimum of the porosity:

�m for test cases T1,sup and T1,jump 0.6
for test cases T1,sub and T1,trans 0.5

L0 Length of the porosity variation 25m
xm Position of the minimal porosity �m in the domain 50m
L Domain length 100m×1m
�x Cell size 0.1m×1m
q Prescribed unit discharge at the upstream boundary 1m2 s−1

Prescribed water depth at the downstream boundary:
hav for test case T1,sup 0.2m

for test case T1,sub 1.1m
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Figure 6. Supercritical one-dimensional flow in narrowing channel (T1,sup). Reference, HLLC and PorAS
solutions; Top left, simulated depth; Top right, simulated unit discharge; Bottom left, detail of the water

depth profile in the narrowing part; Bottom right, simulated velocity in the narrowing part.

porosity gradient. It is therefore possible to compute the water level, using Equation (70) upstream
to the nil porosity gradient and Equation (71) downstream. For the test case with a hydraulic jump,
the water profile upstream to the nil porosity gradient has been computed in a same way than for
the transcritical test case. At the downstream end of the domain, a subcritical depth is prescribed
h=0.811m. The position of the hydraulic jump is determined by computing the water profile
both from the nil porosity gradient to the downstream end and from the downstream end to the
nil porosity gradient; the discretization being used in accordance to the flow regime. The impulse
corresponding to both profiles is also computed; the hydraulic jump leading at the point where both
impulses are equals. For all the test cases, the spatial discretization step for the reference solution
is �x=0.1m. The position of the hydraulic jump being very sensitive to the downstream water
depth, a second porosity variation has been used downstream to the first one for the numerical
test case to ensure that the hydraulic jump stay at the correct location. The middle of the second
porosity variation is located at x=150m, the porosity in the middle is �m=0.7 and the total
length is 50m. The imposed downstream water depth for the reference corresponds exactly to the
water depth upstream to the second porosity variation in the numerical simulation.

Simulations are carried out from arbitrary initial conditions over a grid of uniform cell width�x=
0.1m. The simulation is carried out until steady flow conditions are reached over the computational
domain. Figures 6–9 present the profiles obtained for both the HLLC and the PorAS solver. For
the sake of clarity, only every 10th cell is represented in the Figures 6–10. In the subcritical, the
supercritical and the hydraulic jump test cases, both the water depth and the unit discharge are
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Figure 7. Subcritical one-dimensional flow in narrowing channel (T1,sub). Reference, HLLC and PorAS
solutions; Top left, simulated depth; Top right, simulated unit discharge; Bottom, simulated velocity.
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Figure 8. Transcritical one-dimensional flow in narrowing channel (T1,trans). Reference, HLLC and PorAS
solutions; Left, simulated depth; Right, simulated velocity.

correctly computed by the two solvers. Nevertheless, the water depth in the narrowing part is better
estimated using the PorAS solver in supercritical flow (Figure 6, bottom left). The HLLC solver
underestimates the velocity in this region. For the transcritical test case, both water depth and
velocity profiles are well computed by the HLLC and the PorAS solvers. Figure 10 presents the
discharge computed with the HLLC and the PorAS solver. Since the test cases T1,(sub,sup, trans, jump)
are steady-state simulations, the discharge has to be the same over the computational domain. For
these simulations, the HLLC solver overestimates the discharge, whereas the PorAS solver keeps

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:1299–1331
DOI: 10.1002/fld



PORAS: SHALLOW WATER SOLVER WITH POROSITY 1319

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70 80 90 100

x (m)

h 
(m

)

Reference

HLLC
Poras

Reference

HLLC
Poras

Reference

HLLC
Poras

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 10 20 30 40 50 60 70 80 90 100

x (m)

q 
(m

²/
s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 10 20 30 40 50 60 70 80 90 100

x (m)

u 
(m

/s
)

Figure 9. Hydraulic jump in narrowing channel (T1,jump). Reference, HLLC and PorAS solutions; Top
left, simulated depth; Top right, simulated unit discharge; Bottom, simulated velocity.

it constant. This phenomena may explain the velocity underestimation for the supercritical test
case in the narrowing region. The inefficiency of the HLLC solver for such test cases has been
investigated in [6], and as the authors suggested, it is impossible for the HLLC solver to compute
correct steady-state conditions.

3.2. One-dimensional flow over a bump (T2,(sub, trans))

The previous test cases have highlighted the performance of the proposed solver in the presence
of a spatially varying porosity (computed in the source term). The following test cases aim to test
the PorAS solver when the varying parameter is the bottom slope. The specifications proposed
in [6] have been reused (Tables II and III).

Figure 11 compares the water depth and the unit discharge computed using both solvers with the
semi-analytical solution obtained by solving the momentum conservation equation. Both solvers
compute correctly the water level but the HLLC solver introduces an unexpected variation of the
unit discharge. The same reason as for the previous test cases can be invoked. Further analysis of
this problem can be found in [6].

3.3. Dambreak problem

To evaluate the performance of the PorAS solver in transient configuration, three dambreak prob-
lems have been used.
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Figure 10. One-dimensional flow in narrowing channel (T1,(sub,sup, trans, jump)). Reference, HLLC and
PorAS solutions; Top left, simulated discharge for supercritical test case; Top right, simulated discharge
for subcritical test case; Bottom left, simulated discharge for transcritical test case; Bottom right, simulated

discharge for the hydraulic jump test case.

Table II. Parameters for the second geometry—one-dimensional subcritical flow over a bump (T2,sub).

Symbol Meaning Value

g Gravitational acceleration 9.81ms−2

h0 Bump height 0.2m
L0 Bump length 4m
q Prescribed unit discharge at the upstream boundary 4.42m2 s−1

zd Prescribed water depth at the downstream boundary 2m
z0 Initial water level 2m
�x Cell size 1m

3.3.1. One-dimensional dambreak with variable porosity (T3). The first transient test case (T3)
consists of a dambreak over a flat bottom with a porosity varying linearly from 0 to 1. Computational
parameters are given in Table IV. As explained in [5], this one-dimensional dambreak with variable
porosity is equivalent to a classical circular dambreak with uniform porosity. The water level and
the unit discharge for the reference are calculated by computing the classical dambreak over a grid
with uniform cells width �x=10−4m. Figure 12 compares the results obtained using the HLLC
and the PorAS solver with the reference. With both solvers, the water depth and the unit discharge
are correctly estimated. The proposed solver introduces progressively two small peaks on both

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:1299–1331
DOI: 10.1002/fld



PORAS: SHALLOW WATER SOLVER WITH POROSITY 1321

Table III. Parameters for the second geometry—one-dimensional transcritical flow over a bump (T2,trans).

Symbol Meaning Value

g Gravitational acceleration 9.81ms−2

h0 Bump height 0.2m
L0 Bump length 4m
q Prescribed unit discharge at the upstream boundary 1.53m2 s−1

z0 Initial water level 0.1m
�x Cell size 1m
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Figure 11. One-dimensional flow over a bump (T2,(sub, trans)). Reference, HLLC and PorAS
solutions; Left, simulated water level; Right, simulated unit discharge; Top, subcritical test

case; Bottom, transcritical test case.

sides of the cell containing the initial discontinuity, corresponding to the critical point. Since the
peaks only appear on the water depth profile, it is possible to state that the momentum transfer
is correctly estimated whereas the mass transfer is not. Another difference can be observed for
x=0m. The water depth profile is better estimated using the HLLC solver, whereas the PorAS
solver better estimates the unit discharge profile. The water depth and the unit discharge profiles
at the shock computed by the PorAS solver are also steeper.

3.3.2. One-dimensional dambreak with porosity discontinuity (T4). The second transient test case
is a one-dimensional dambreak through a porosity discontinuity, which is located at the same place
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Table IV. Parameters for the one-dimensional dambreak with variable porosity (T3).

Symbol Meaning Value

g Gravitational acceleration 9.81ms−2

h0,L Initial water depth on the left-hand side of the dam 10m
h0,R Initial water depth on the right-hand side of the dam 1m
L Domain length 100m
x0 Dam location 50m
�x Cell size 1m
��
�x Derivative of the porosity 0.01m−1
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Figure 12. One-dimensional dambreak with variable porosity (T3). Reference, HLLC and PorAS solutions;
left, simulated depth, right simulated unit discharge.

Table V. Parameters for the one-dimensional dambreak with porosity discontinuity (T4).

Symbol Meaning Value

g Gravitational acceleration 9.81ms−2

h0,L Initial water depth on the left-hand side of the dam 10m
�L Porosity on the left-hand side of the dam 1
h0,R Initial water depth on the right-hand side of the dam 1m
�R Porosity on the right-hand side of the dam 0.1
L Domain length 100m
x0 Dam location 50m
�x Cell size 1m

that the initial water discontinuity. Computational parameters are given in Table V. The method
used to determine the reference profile is detailed in [5]. Figure 13 compares the profiles obtained
with both solvers to the expected ones.

Both solvers compute correctly the water depth and the unit discharge. Nevertheless, they
introduce diffusion through the rarefaction waves and the PorAS solver is, in that case, the most
diffusive one. With the HLLC solver, the position of the shock is better estimated: at t=4s, the
shock should theoretically be at the position x=94.08m; the position found by the HLLC solver
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Figure 13. One-dimensional dambreak with porosity discontinuity (T4). Reference, HLLC and PorAS
solutions; left, simulated depth, right simulated unit discharge.

Table VI. Parameters for the two-dimensional dambreak with variable porosity (T5).

Symbol Meaning Value

g Gravitational acceleration 9.81ms−2

h0,L Initial water depth on the left-hand side of the dam 10m
h0,R Initial water depth on the right-hand side of the dam 1m
L Domain length 200m×200m
r0 Radius of the dam 50m
�x Cell size 1m

is x=95m and x=96m for the PorAS solver. It can be noticed that the shock remains steeper
with the proposed solver.

3.3.3. Two-dimensional dambreak with variable porosity (T5). The third transient test case (T5)
is a two-dimensional dambreak of a circular dam over a variable porosity. As shown in [5], the
circular dambreak problem with a porosity proportional to the inverse of the distance to the centre
of the dam has the same analytical solution as a classical one-dimensional dambreak with a constant
porosity. Specifications for this test case are given in Table VI.

The calculated profiles and the analytical solution are compared in Figure 14. Both HLLC and
PorAS solvers compute correct water depth and unit discharge profiles. Some differences can be
observed depending on the considered direction of the profile. The differences are significant only
for the proposed solver: at the critical point, the PorAS solver underestimates the water depth in
the x and y directions. Nevertheless, there is always less diffusion and the water depth upstream
to the shock is better estimated using the PorAS solver.

3.4. Convergence study (T6)

The convergence of the numerical solution has been carried out on grids with decreasing spacing
and time step. The test case is a steady flow in a culvert with variable porosity and bottom
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Figure 14. Two-dimensional dambreak with variable porosity (T5). Reference, HLLC and PorAS solutions;
Top: Left, simulated depth along the first bisector; Right, simulated unit discharge along the first bisector;
Middle: Left, simulated depth along the X -axis; Right, simulated unit discharge along the X -axis; Bottom:

Left, simulated depth along the Y -axis; Right, simulated unit discharge along the Y -axis.

elevation. The evolutions of both porosity and bottom elevation along the culvert are shown in
Figure 15.

The semi-analytical solution has been calculated by discretizing the momentum equation.
Combining the momentum and continuity equations leads to:

�(1−Fr2)
dh

dx
=hFr2

d�

dx
−�

dzb
dx

(72)
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Figure 15. Longitudinal evolution of the porosity and the bottom elevation for the convergence test case.

Since the flow regime has been chosen to be subcritical, Equation (72) should be discretized from
downstream to upstream:

hu=hd+ 1

�d(1−Fr2d)
[hdFr2d(�u−�d)−�d(zbu −zbd)] (73)

To test convergence, computational time step and spatial step should be decreased in the same way.
As the equations are explicitly solved, the Courant–Lax–Friedrich conditions has to be insured:

Cr= ��t

�x
�1

2
(74)

The time step is directly computed by the model ensuring that the Courant stability constraint is
verified. The time step is therefore automatically reduced in a same proportion that the spatial
step. Computational parameters are presented in Table VII. A first coarse grid (�x=1m) is used
to calculate the numerical solution using both the HLLC and the PorAS solvers (T6,1). The
convergence is checked by decreasing the cell width by 10 for the second convergence test case
(T6,2) and by 100 for the third convergence test case (T6,3). For the sake of clarity, only one point
every 10 cells (respectively, 100 cells) are represented in the Figure 17 (respectively, 18). The
calculated profiles and the analytical solution are compared in Figures 16–18. Both HLLC and
PorAS solvers compute correct water depth and unit discharge profiles for all the test cases. For the
coarse grid (Figure 16), the free surface is overestimated by the PorAS solver and underestimated
by the HLLC solver; both solvers overestimate the unit discharge. The computed discharge is
correctly estimated by the PorAS solver and overestimated by the HLLC solver in the variation
zone. As the spatial step decreases, the numerical solutions for the water elevation and the unit
discharge computed with both the HLLC and the PorAS solvers get closer from the analytical
solution. The difference between the discharge computed by the HLLC solver and the reference
solution decreases proportionally to the spatial step decreases. The computational effort required
to simulate 1000 s for each test case of the convergence study using both solvers is presented in
Table VIII. For all the simulations, the PorAS solver saves 4.5% of the computational duration.
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Table VII. Parameters for the convergence test cases (T6,1, T6,2 and T6,3).

Symbol Meaning Value

g Gravitational acceleration 9.81ms−2

Porosity upstream to the variation zone 0.7
Porosity downstream to the variation zone 1
Bottom elevation upstream to the variation zone 0.5m
Bottom elevation downstream to the variation zone 1.0m

l0 Length of the variation zone 20m
X0 Position of the beginning of the variation zone 10m
L Domain length 100m×1m

Cell size
�x for test case T6,1 1m×1m

for test case T6,2 0.1m×1m
for test case T6,3 0.01m×1m

q Prescribed unit discharge at the upstream boundary 1m2 s−1

zd Prescribed water level at the downstream boundary 2m
zi Initial water depth over the domain 1m
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Figure 16. First convergence test case (T6,1). Reference, HLLC and PorAS solutions; Top left, simulated
water elevation; Top right, simulated unit discharge; Bottom, simulated discharge.
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Figure 17. Second convergence test case (T6,2). Reference, HLLC and PorAS solutions; Top left, simulated
water elevation; Top right, simulated unit discharge; Bottom, simulated discharge.

3.5. Experimental test case (T7)

The usefulness and the validity of the porosity approach for large scale modelling of floods in the
presence of urbanized areas have been demonstrated in [5]. In the previous section, the validity of
the PorAS solver is demonstrated using (semi-) analytical test cases. In order to check the validity
of the PorAS solver under real configuration, comparisons of the model results for both HLLC and
PorAS solvers are made with experimental data. The experiments were performed using a scale
model of the Italian Toce valley at CESI (Italy) during the IMPACT European project. Square
blocks are implemented in a 7m long and 3.5–5m wide model to represent urban area (Figure 19).

The measured hydrograph is used as upstream boundary conditions. The computed water surface
elevations using both the PorAS and the HLLC solvers at t=20s are compared with the measured
values (Figure 20). There is no significant differences between the computed profiles using the
PorAS and the HLLC solver. Moreover, the computed water levels match the measurements; the
explanations for the differences presented in [5] remain valid.

4. CONCLUSIONS

An approximate-state Riemann solver has been developed for the classical shallow water equa-
tions with source terms arising from non-uniform porosity and bottom elevation. Using the flux
components instead of the conserved variable in the expression of the Riemann invariants allows
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Figure 18. Third convergence test case (T6,3). Reference, HLLC and PorAS solutions; Top left, simulated
water elevation; Top right, simulated unit discharge; Bottom, simulated discharge.

Table VIII. Computational effort for the convergence test cases (T6,(1,2,3)).

PorAS solver HLLC solver

T6,1 1.50 s 1.52 s
T6,2 1min 6 s 1min 9 s
T6,3 1 h 38min 53 s 1 h 43min 20 s

the direct calculation of the fluxes at the interfaces, while accounting for the influence of the
source terms in the characteristic equations. This results in improved solution of the continuity and
momentum equations, in particular near steady-state configurations. The different computational
examples have highlighted both advantages and defaults of the proposed solver. For the transient
applications, the efficiency of the proposed solver is the same as that the efficiency of the HLLC
solver. On the dambreak simulations with porosity, the over (or under) estimated water depth close
to the critical point computed by the proposed solver is balanced by steeper fronts and smaller
numerical diffusion. Clear improvements have been obtained with the proposed solver on steady-
state simulation with varying parameters (porosity and/or bottom slope). The PorAS solver can
therefore be used for both transient and steady-state simulation, substantial improvements being
observed on highly variable geometry parameters. The proposed solver is used with a classical
Godunov scheme and can easily be extended to higher-order scheme since no modifications to the
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Figure 19. Topography of the valley for the Toce test case, contour line spacing 0.01m (a). Sketch of the
longitudinal profiles and measurement points (b).
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Figure 20. Water surface elevation at t=20s along profile 1 (a) and profile 2 (b).

Riemann solver are required. Further developments, especially the treatment of critical points, are
under investigation.
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